Part Number Hot Search : 
IIRFZ46N GCF2S LPC2104 MS06936 AQV414EA 1N914 FCT16 29LV8
Product Description
Full Text Search
 

To Download FSQ0170RNA07 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 FSQ0170RNA, FSQ0270RNA, FSQ0370RNA -- Green Mode Fairchild Power Switch (FPSTM)
April 2007
FSQ0170RNA, FSQ0270RNA, FSQ0370RNA Green Mode Fairchild Power Switch (FPSTM)
Features
Internal Avalanche Rugged 700V SenseFET Consumes only 0.8W at 230 VAC & 0.5W Load with Burst-Mode Operation Precision Fixed Operating Frequency, 100kHz Internal Start-up Circuit and Built-in Soft-Start Pulse-by-Pulse Current Limiting and Auto-Restart Mode Over-Voltage Protection (OVP), Overload Protection (OLP), Internal Thermal Shutdown Function (TSD) Under-Voltage Lockout (UVLO) Low Operating Current (3mA) Adjustable Peak Current Limit
Description
The FSQ0170RNA, FSQ0270RNA, FSQ0370RNA consists of an integrated current mode Pulse Width Modulator (PWM) and an avalanche-rugged 700V Sense FET. It is specifically designed for high-performance offline Switch Mode Power Supplies (SMPS) with minimal external components. The integrated PWM controller features include: a fixed-frequency generating oscillator, Under-Voltage Lockout (UVLO) protection, Leading Edge Blanking (LEB), an optimized gate turn-on/ turn-off driver, Thermal Shutdown (TSD) protection, and temperature compensated precision current sources for loop compensation and fault protection circuitry. Compared to a discrete MOSFET and controller or RCC switching converter solution, the FSQ0170RNA, FSQ0270RNA, FSQ0370RNA reduces total component count, design size, and weight while increasing efficiency, productivity, and system reliability. These devices provide a basic platform that is well suited for the design of cost-effective flyback converters, as in PC auxiliary power supplies.
Applications
Auxiliary Power Supply for PC and Server SMPS for VCR, SVR, STB, DVD & DVCD Player, Printer, Facsimile & Scanner Adapter for Camcorder
Related Application Notes
AN-4134: Design Guidelines for Off-line Forward Converters Using Fairchild Power Switch (FPSTM) AN-4137: Design Guidelines for Off-line Flyback Converters Using Fairchild Power Switch (FPSTM) AN-4141: Troubleshooting and Design Tips for Fairchild Power Switch (FPSTM) Flyback Applications AN-4147: Design Guidelines for RCD Snubber of Flyback AN-4148: Audible Noise Reduction Techniques for FPSTM Applications 8-DIP
Ordering Information
Product Number
FSQ0170RNA FSQ0270RNA FSQ0370RNA
Package
8DIP 8DIP 8DIP
Marking Code
Q0170R Q0270R Q0370R
BVDSS
700V 700V 700V
fOSC
100kHz 100kHz 100kHz
RDS(ON) (MAX.)
11 7.2 4.75
FPSTM is a trademark of Fairchild Semiconductor Corporation.
(c) 2006 Fairchild Semiconductor Corporation FSQ0170RNA, FSQ0270RNA, FSQ0370RNA Rev. 1.0.2 www.fairchildsemi.com
FSQ0170RNA, FSQ0270RNA, FSQ0370RNA -- Green Mode Fairchild Power Switch (FPSTM)
Application Diagram
AC IN DC OUT
Vstr IPK PWM FB
Drain
VCC
GND
FSQ0x70RNA Rev. 1.01
Figure 1. Typical Flyback Application
Output Power Table(1)
Product
FSQ0170RNA FSQ0270RNA FSQ0370RNA
230VAC 15%(2) Adapter
14W 17W 20W
(3)
85-265VAC
(4)
Open Frame
20W 24W 27W
Adapter
9W 11W 13W
(3)
Open Frame(4)
13W 16W 19W
Notes: 1. The maximum output power can be limited by junction temperature. 2. 230 VAC or 100/115 VAC with doubler. 3. Typical continuous power in a non-ventilated enclosed adapter with sufficient drain pattern as a heat sink, at 50C ambient. 4. Maximum practical continuous power in an open-frame design with sufficient drain pattern as a heat sink, at 50C ambient.
Internal Block Diagram
VCC 2
ICH
Vstr 5
Drain 6,7,8
8V/12V VBURL/VBURH VCC IDELAY VCC OSC IFB 2.5R
VCC good
Vref
Internal Bias
FB 3 IPK 4
R
Normal Burst
PWM
S R
Q Q LEB
Gate Driver
VSD VCC Vovp TSD VCC good S R Q Q Soft-Start FSQ0x70RNA Rev. 1.00
1
GND
Figure 2. Internal Block Diagram
(c) 2006 Fairchild Semiconductor Corporation FSQ0170RNA, FSQ0270RNA, FSQ0370RNA Rev. 1.0.2 2 www.fairchildsemi.com
FSQ0170RNA, FSQ0270RNA, FSQ0370RNA -- Green Mode Fairchild Power Switch (FPSTM)
Pin Configuration
GND VCC FB IPK
FSQ0x70RNA Rev. 1.00
D D D Vstr
8-DIP
Figure 3. Pin Configuration (Top View)
Pin Definitions
Pin #
1
Name
GND
Description
Ground. SenseFET source terminal on primary side and internal control ground. Power Supply. Positive supply voltage input. Although connected to an auxiliary transformer winding, current is supplied from pin 5 (Vstr) via an internal switch during start-up, see Figure 2. It is not until VCC reaches the UVLO upper threshold (12V) that the internal start-up switch opens and device power is supplied via the auxiliary transformer winding. Feedback. The feedback voltage pin is the non-inverting input to the PWM comparator. It has a 0.9mA current source connected internally while a capacitor and opto-coupler are typically connected externally. A feedback voltage of 6V triggers overload protection (OLP). There is a time delay while charging external capacitor CFB from 3V to 6V using an internal 5A current source. This time delay prevents false triggering under transient conditions, but still allows the protection mechanism to operate under true overload conditions. Peak Current Limit. This pin adjusts the peak current limit of the SenseFET. The 0.9mA feedback current source is diverted to the parallel combination of an internal 2.8k resistor and any external resistor to GND on this pin. This determines the peak current limit. If this pin is tied to VCC or left floating, the typical peak current limit is 0.8A (FSQ0170RNA), 0.9A (FSQ0270RNA), or 1.1A (FSQ0370RNA). Start-up. This pin connects to the rectified AC line voltage source. At start-up, the internal switch supplies internal bias and charges an external storage capacitor placed between the VCC pin and ground. Once the VCC reaches 12V, the internal switch is opened. SenseFET drain. High-voltage power SenseFET drain connection. SenseFET drain. High-voltage power SenseFET drain connection. SenseFET drain. High-voltage power SenseFET drain connection.
2
VCC
3
FB
4
IPK
5 6 7 8
Vstr Drain Drain Drain
(c) 2006 Fairchild Semiconductor Corporation FSQ0170RNA, FSQ0270RNA, FSQ0370RNA Rev. 1.0.2 3
www.fairchildsemi.com
FSQ0170RNA, FSQ0270RNA, FSQ0370RNA -- Green Mode Fairchild Power Switch (FPSTM)
Absolute Maximum Ratings
The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. TA = 25C, unless otherwise specified.
Symbol
VDRAIN VSTR IDM Drain Pin Voltage Vstr Pin Voltage
Characteristic
Value
700 700 FSQ0170RNA 4 8 12 50 140 230 20 -0.3 to VCC 1.5 Internally limited -25 to +85 -55 to +150 FSQ0270RNA FSQ0370RNA FSQ0170RNA
Unit
V V A
Drain Current
Pulsed(5)
EAS VCC VFB PD TJ TA TSTG
Single Pulsed Avalanche Supply Voltage Feedback Voltage Range Total Power Dissipation
Energy(6)
FSQ0270RNA FSQ0370RNA
mJ V V W C C C
Operating Junction Temperature Operating Ambient Temperature Storage Temperature
Notes: 5. Non-repetitive rating: Pulse width is limited by maximum junction temperature. 6. L = 51mH, starting TJ = 25C.
Thermal Impedance
TA = 25C, unless otherwise specified. All items are tested with the standards JESD 51-2 and 51-10 (DIP).
Symbol
JA JC JT
Parameter
Junction-to-Ambient Thermal Junction-to-Case Thermal Resistance(7) Resistance(8)
Value
80 20 35
Unit
C/W C/W C/W
Junction-to-Top Thermal Resistance(9)
Notes: 7. Free standing with no heatsink; without copper clad. (Measurement Condition - Just before junction temperature TJ enters into OTP.) 8. Measured on the DRAIN pin close to plastic interface. 9. Measured on the PKG top surface.
(c) 2006 Fairchild Semiconductor Corporation FSQ0170RNA, FSQ0270RNA, FSQ0370RNA Rev. 1.0.2 4
www.fairchildsemi.com
FSQ0170RNA, FSQ0270RNA, FSQ0370RNA -- Green Mode Fairchild Power Switch (FPSTM)
Electrical Characteristics
TA = 25C unless otherwise specified.
Symbol
SenseFET Section IDSS
(10)
Parameter
Condition
VDS = 700V, VGS = 0V
Min.
Typ.
Max.
50 200
Unit
Zero-Gate-Voltage Drain Current Drain-Source On-State Resistance(11) FSQ0170RNA FSQ0270RNA FSQ0370RNA FSQ0170RNA FSQ0270RNA FSQ0370RNA FSQ0170RNA
VDS = 560V, VGS = 0V, TC = 125C 8.8 VGS = 10V, ID = 0.5A 6.0 4.0 250 550 315 VGS = 0V, VDS = 25V, f = 1MHz 25 38 47 10 17 9 12 20 11.2 4 15 VDS = 350V, ID = 1.0A 34 30 55 28.2 10 25 32 92 100 5 55 0 VFB = GND VFB = GND VFB = GND VFB = 4V 11 7 0.7 60 0 12 8 0.9 10
A
11 7.2 4.75
RDS(ON)
CISS
Input Capacitance
COSS
Output Capacitance
FSQ0270RNA FSQ0370RNA FSQ0170RNA FSQ0270RNA FSQ0370RNA FSQ0170RNA FSQ0270RNA FSQ0370RNA FSQ0170RNA
pF
CRSS
Reverse Transfer Capacitance
td(on)
Turn-On Delay Time
tr
Rise Time
FSQ0270RNA FSQ0370RNA FSQ0170RNA
ns
td(off)
Turn-Off Delay Time
FSQ0270RNA FSQ0370RNA FSQ0170RNA
tf
Fall Time
FSQ0270RNA FSQ0370RNA
Control Section fOSC fOSC DMAX DMIN VSTART VSTOP IFB tS/S Switching Frequency Switching Frequency Variation Maximum Duty Cycle Minimum Duty Cycle UVLO Threshold Voltage Feedback Source Current Internal Soft-Start Time(10)
(10)
108 10 65 0 13 9 1.1
KHz % % % V mA ms
-25C TA 85C Measured at 0.1 x VDS
(c) 2006 Fairchild Semiconductor Corporation FSQ0170RNA, FSQ0270RNA, FSQ0370RNA Rev. 1.0.2 5
www.fairchildsemi.com
FSQ0170RNA, FSQ0270RNA, FSQ0370RNA -- Green Mode Fairchild Power Switch (FPSTM)
Electrical Characteristics (Continued)
TA = 25C unless otherwise specified.
Symbol
Burst-Mode Section VBURH VBURL VBUR(HYS) Protection Section
Parameter
Condition
Min.
0.5
Typ.
0.6 0.4 200 0.80 0.90 1.10 500 140 6.0 19 5.0
Max.
0.7 0.5 300 0.90 1.01 1.23
Unit
V V mV
Burst-Mode Voltage
TJ = 25C
0.3 100
FSQ0170RNA ILIM tCLD TSD VSD VOVP IDELAY tLEB Peak Current Limit FSQ0270RNA FSQ0370RNA Current Limit Delay Time(10) Thermal Shutdown Temperature Shutdown Feedback Voltage Over-Voltage Protection Shutdown Delay Current Leading Edge Blanking Time Operating Supply Current (control part only) Start-Up Charging Current Vstr Supply Voltage
(10) (10)
di/dt = 170mA/s di/dt = 200mA/s di/dt = 240mA/s
0.70 0.79 0.97 125 5.5 18
A ns C
6.5 6.5
V V A ns
VFB = 4V
3.5 200
Total Device Section IOP ICH VSTR VCC = 14V VCC = 0V VCC = 0V 1 0.70 3 0.85 24 5 1.00 mA mA V
Notes: 10. These parameters, although guaranteed, are not 100% tested in production. 11. Pulse test: Pulse width 300s, duty 2%.
(c) 2006 Fairchild Semiconductor Corporation FSQ0170RNA, FSQ0270RNA, FSQ0370RNA Rev. 1.0.2 6
www.fairchildsemi.com
FSQ0170RNA, FSQ0270RNA, FSQ0370RNA -- Green Mode Fairchild Power Switch (FPSTM)
Typical Performance Characteristics (Control Part)
These characteristic graphs are normalized at TA= 25C.
1.2 1.0
1.2 1.0
Normalized
0.8 0.6 0.4 0.2 0.0 -25 0 25 50 75 100 125 150
Normalized
0.8 0.6 0.4 0.2 0.0 -25 0 25 50 75 100 125 150
Temperature [C]
Temperature [C]
Figure 4. Operating Frequency (fOSC) vs. TA
Figure 5. Over-Voltage Protection (VOVP) vs. TA
1.2 1.0
1.2 1.0
Normalized
0.8 0.6 0.4 0.2 0.0 -25 0 25 50 75 100 125 150
Normalized
0.8 0.6 0.4 0.2 0.0 -25 0 25 50 75 100 125 150
Temperature [C]
Temperature [C]
Figure 6. Maximum Duty Cycle (DMAX) vs. TA
Figure 7. Operating Supply Current (IOP) vs. TA
1.2 1.0
1.2 1.0
Normalized
Normalized
0.8 0.6 0.4 0.2 0.0 -25 0 25 50 75 100 125 150
0.8 0.6 0.4 0.2 0.0 -25 0 25 50 75 100 125 150
Temperature [C]
Temperature [C]
Figure 8. Start Threshold Voltage (VSTART) vs. TA
(c) 2006 Fairchild Semiconductor Corporation FSQ0170RNA, FSQ0270RNA, FSQ0370RNA Rev. 1.0.2 7
Figure 9. Stop Threshold Voltage (VSTOP) vs. TA
www.fairchildsemi.com
FSQ0170RNA, FSQ0270RNA, FSQ0370RNA -- Green Mode Fairchild Power Switch (FPSTM)
Typical Performance Characteristics (Continued)
These characteristic graphs are normalized at TA= 25C.
1.2 1.0
1.2 1.0
Normalized
0.8 0.6 0.4 0.2 0.0 -25 0 25 50 75 100 125 150
Normalized
0.8 0.6 0.4 0.2 0.0 -25 0 25 50 75 100 125 150
Temperature [C]
Temperature [C]
Figure 10. Feedback Source Current (IFB) vs. TA
Figure 11. Start-Up Charging Current (ICH) vs. TA
1.2 1.0
Normalized
0.8 0.6 0.4 0.2 0.0 -25 0 25 50 75 100 125 150
Temperature [C]
Figure 12. Peak Current Limit (ILIM) vs. TA
(c) 2006 Fairchild Semiconductor Corporation FSQ0170RNA, FSQ0270RNA, FSQ0370RNA Rev. 1.0.2 8
www.fairchildsemi.com
FSQ0170RNA, FSQ0270RNA, FSQ0370RNA -- Green Mode Fairchild Power Switch (FPSTM)
Functional Description
1. Startup: In previous generations of Fairchild Power Switches (FPSTM), the Vstr pin required an external resistor to the DC input voltage line. In this generation, the startup resistor is replaced by an internal highvoltage current source and a switch that shuts off 10ms after the supply voltage, VCC, goes above 12V. The source turns back on if VCC drops below 8V.
VIN,dc ISTR
Vstr Vcc Vcc<8V UVLO on 10ms after Vcc 12V UVLO off ICH J-FET
4. Protection Circuits: The FPS has several protective functions, such as Overload Protection (OLP), OverVoltage Protection (OVP), Under-Voltage Lockout (UVLO), and Thermal Shutdown (TSD). Because these protection circuits are fully integrated in the IC without external components, reliability is improved without increasing cost. Once a fault condition occurs, switching is terminated and the SenseFET remains off. This causes VCC to fall. When VCC reaches the UVLO stop voltage, VSTOP (typically 8V), the protection is reset and the internal high-voltage current source charges the VCC capacitor via the Vstr pin. When VCC reaches the UVLO start voltage, VSTART (typically 12V), the FPS resumes its normal operation. In this manner, the auto-restart can alternately enable and disable the switching of the power SenseFET until the fault condition is eliminated. 4.1 Overload Protection (OLP): Overload is defined as the load current exceeding a pre-set level due to an unexpected event. In this situation, the protection circuit should be activated to protect the SMPS. However, even when the SMPS is operating normally, the OLP circuit can be activated during the load transition. To avoid this undesired operation, the OLP circuit is designed to be activated after a specified time to determine whether it is a transient situation or a true overload situation. In conjunction with the IPK current limit pin (if used), the current mode feedback path limits the current in the SenseFET when the maximum PWM duty cycle is attained. If the output consumes more than this maximum power, the output voltage (VO) decreases below nominal voltage. This reduces the current through the opto-coupler LED, which also reduces the optocoupler transistor current, thus increasing the feedback voltage (VFB). If VFB exceeds 3V, the feedback input diode is blocked and the 5A current source (IDELAY) starts to slowly charge CFB up to VCC. In this condition, VFB increases until it reaches 6V, when the switching operation is terminated, as shown in Figure 15. The shutdown delay time is the time required to charge CFB from 3V to 6V with 5A current source.
VFB
FSQ0x70RNA Rev.00
FSQ0x70RNA Rev. 1.00
Figure 13. High-Voltage Current Source 2. Feedback Control: The 700V FPS series employs current-mode control, as shown in Figure 14. An optocoupler (such as the H11A817A) and shunt regulator (such as the KA431) are typically used to implement the feedback network. Comparing the feedback voltage with the voltage across the Rsense resistor of SenseFET, plus an offset voltage, makes it possible to control the switching duty cycle. When the shunt regulator reference pin voltage exceeds the internal reference voltage of 2.5V, the opto-coupler LED current increases, the feedback voltage VFB is pulled down and thereby reduces the duty cycle. This typically happens when the input voltage increases or the output load decreases.
VCC 5A VO VCC 900A OSC + VFB 431 D1 D2 VFB,in R 2.5R Gate driver
FB
3 CFB
OLP FSQ0x70RNA Rev. 1.00 VSD
Overload Protection
6V
Figure 14. Pulse Width Modulation Circuit 3. Leading Edge Blanking (LEB): When the internal SenseFET is turned on, the primary-side capacitance and secondary-side rectifier diode reverse recovery typically cause a high-current spike through the SenseFET. Excessive voltage across the Rsense resistor leads to incorrect feedback operation in the currentmode PWM control. To counter this effect, the FPS employs a Leading Edge Blanking (LEB) circuit. This circuit inhibits the PWM comparator for a short time (tLEB) after the Sense FET is turned on.
3V
t12= CFBx(V(t2)-V(t1)) / IDELAY
t1
t12 = CFB
V ( t 2 ) - V (t1 ) ; IDELAY
t2
IDELAY = 5 A, V ( t1 ) = 3V , V ( t 2 ) = 6V
t
Figure 15. Overload Protection (OLP) 4.2 Thermal Shutdown (TSD): The SenseFET and the control IC are integrated, making it easier for the control
(c) 2006 Fairchild Semiconductor Corporation FSQ0170RNA, FSQ0270RNA, FSQ0370RNA Rev. 1.0.2 9
www.fairchildsemi.com
FSQ0170RNA, FSQ0270RNA, FSQ0370RNA -- Green Mode Fairchild Power Switch (FPSTM)
IC to detect the temperature of the SenseFET. When the temperature exceeds approximately 140C, thermal shutdown is activated. 4.3 Over-Voltage Protection (OVP): In the event of a malfunction in the secondary-side feedback circuit, or an open feedback loop caused by a soldering defect, the current through the opto-coupler transistor becomes almost zero (see Figure 14). VFB climbs up in a similar manner to the overload situation, forcing the preset maximum current to be supplied to the SMPS until the overload protection is activated. Because excess energy is provided to the output, the output voltage may exceed the rated voltage before the overload protection is activated, resulting in the breakdown of the devices in the secondary side. To prevent this situation, an OverVoltage Protection (OVP) circuit is employed. In general, VCC is proportional to the output voltage and the FPS uses VCC instead of directly monitoring the output voltage. If VCC exceeds 19V, the OVP circuit is activated, resulting in termination of the switching operation. To avoid undesired activation of OVP during normal operation, VCC should be designed to be below 19V. 5. Soft-Start: The FPS has an internal soft-start circuit that slowly increases the SenseFET current after startup, as shown in Figure 16. The typical soft-start time is 10ms, where progressive increments of the SenseFET current are allowed during the start-up phase. The pulse width to the power switching device is progressively increased to establish the correct working conditions for transformers, inductors, and capacitors. The voltage on the output capacitors is progressively increased to smoothly establish the required output voltage. This also helps prevent transformer saturation and reduces the stress on the secondary diode during startup.
#6,7,8 DRAIN
At this point, switching stops and the output voltage starts to drop at a rate dependent on the standby current load. This causes the feedback voltage to rise. Once it passes VBURH, switching resumes. The feedback voltage then falls and the process is repeated. Burstmode operation alternately enables and disables switching of the SenseFET and reduces switching loss in standby mode.
Burst Operation VFB Burst Operation Normal Operation
VBURH VBURL Current Waveform Switching OFF Switching OFF FSQ0x70RNA Rev.00
Figure 17. Burst Operation Function 7. Adjusting Peak Current Limit: As shown in Figure 18, a combined 2.8k internal resistance is connected to the non-inverting lead on the PWM comparator. An external resistance of Rx on the current limit pin forms a parallel resistance with the 2.8k when the internal diodes are biased by the main current source of 900A.
V CC 5A V FB 3 IDELAY IFB
V CC 900A 2k PWM Comparator
0.8k
5V
IPK 4 Rx
SenseFET Current Sense FSQ0x70RNA Rev. 1.00
#1 GND ILIM Rsense
Figure 18. Peak Current Limit Adjustment For example, FSQ0270RNA has a typical SenseFET peak current limit (ILIM) of 0.9A. ILIM can be adjusted to 0.6A by inserting Rx between the IPK pin and the ground. The value of the Rx can be estimated by the following equations: 0.9A: 0.6A = 2.8k : Xk, X = Rx || 2.8k where X represents the resistance of the parallel network.
FSQ0x70RNA Rev. 1.00
Figure 16. Soft-Start Function 6. Burst Operation: To minimize power dissipation in standby mode, the FPS enters burst-mode operation. Feedback voltage decreases as the load decreases, as shown in Figure 17, and the device automatically enters burst-mode when the feedback voltage drops below VBURH (typically 600mV). Switching continues until the feedback voltage drops below VBURL (typically 400mV).
(c) 2006 Fairchild Semiconductor Corporation FSQ0170RNA, FSQ0270RNA, FSQ0370RNA Rev. 1.0.2 10
www.fairchildsemi.com
FSQ0170RNA, FSQ0270RNA, FSQ0370RNA -- Green Mode Fairchild Power Switch (FPSTM)
Application Information
Methods of Reducing Audible Noise
Switching-mode power converters have electronic and magnetic components, which generate audible noise when the operating frequency is in the range of 20~20,000Hz. Even though they operate above 20KHz, they can make noise, depending on the load condition. The following sections discuss methods to reduce noise.
Glue or Varnish
The most common method of reducing noise involves using glue or varnish to tighten magnetic components. The motion of core, bobbin, and coil and the chattering or magnetostriction of core can cause the transformer to produce audible noise. The use of rigid glue and varnish helps reduce the transformer noise. Glue or varnish can also can crack the core because sudden changes in the ambient temperature cause the core and the glue to expand or shrink in a different ratio.
Figure 19. Equal Loudness Curves
Ceramic Capacitor
Using a film capacitor instead of a ceramic capacitor as a snubber capacitor is another noise reduction solution. Some dielectric materials show a piezoelectric effect, depending on the electric field intensity. Hence, a snubber capacitor becomes one of the most significant sources of audible noise. Another possibility is to use a Zener clamp circuit instead of an RCD snubber for higher efficiency as well as lower audible noise.
Adjusting Sound Frequency
Moving the fundamental frequency of noise out of the 2~4kHz range is the third method. Generally, humans are more sensitive to noise in the range of 2~4kHz. When the fundamental frequency of noise is located in this range, the noise sounds louder although the noise intensity level is identical (see Figure 19). When the FPS acts in burst mode and the burst operation is suspected to be a source of noise, this method may be helpful. If the frequency of burst mode operation lies in the range of 2~4kHz, adjusting the feedback loop can shift the burst operation frequency. To reduce the burst operation frequency, increase a feedback gain capacitor (CF), opto-coupler supply resistor (RD); and feedback capacitor (CB), and decrease a feedback gain resistor (RF), as shown in Figure 20. Figure 20. Typical Feedback Network of FPS
Other Reference Materials
AN-4134: Design Guidelines for Off-line Forward Converters Using Fairchild Power Switch (FPSTM) AN-4137: Design Guidelines for Off-line Flyback Converters Using Fairchild Power Switch (FPSTM) AN-4140: Transformer Design Consideration for Off-line Flyback Converters using Fairchild Power Switch (FPSTM) AN-4141: Troubleshooting and Design Tips for Fairchild Power Switch (FPSTM) Flyback Applications AN-4147: Design Guidelines for RCD Snubber of Flyback AN-4148: Audible Noise Reduction Techniques for FPSTM Applications
(c) 2006 Fairchild Semiconductor Corporation FSQ0170RNA, FSQ0270RNA, FSQ0370RNA Rev. 1.0.2 11
www.fairchildsemi.com
FSQ0170RNA, FSQ0270RNA, FSQ0370RNA -- Green Mode Fairchild Power Switch (FPSTM)
Typical Application Circuit
Application
PC Auxiliary Power Supply (Using FSQ0270RNA)
Output power
15W
Input Voltage
Universal input (85-265 VAC)
Output Voltage (Max. Current)
5V (3A)
Features
High efficiency (> 78% at 115 VAC and 230 VAC input) Low standby mode power consumption (< 0.8W at 230 VAC input and 0.5W load) Enhanced system reliability through various protection functions Internal soft-start (10ms) Line UVLO function can be achieved using external component
Key Design Notes
The delay time for overload protection is designed to be about 30ms with C8 of 47nF. If faster/slower triggering of OLP is required, C8 can be changed to a smaller/larger value (e.g. 100nF for about 60ms). ZP1, DL1, RL1, RL2, RL3, RL4, RL5, RL7, QL1, QL2, and CL9 build a Line Under-Voltage Lockout block (UVLO). The Zener voltage of ZP1 determines the input voltage that makes FPS turn on. RL5 and DL1 provide a reference voltage from VCC. If the input voltage divided by RL1, RL2, and RL4 is lower than the Zener voltage of DL1, QL1 and QL2 turn on and pull down VFB to ground. An evaluation board and corresponding test report can be provided.
1. Schematic
C1 2.2nF AC250V L1 330H
RS1 9
CS1 1.5nF
ZDS1 P6KE180A C10 1nF 250V ZP1 1N4762
T1 EE2229 1 6,7 3 9, 10
L2 1H D1 SB540 R3 560 1 C4 1000F 16V C9 1000F 16V U1A FOD817A 2 3 C6 47nF 1 2 R9 10k R4 100 J4 0 R5 1.25k 1%
CON2 1 2 Output
R6 CON1 2.4 1W 1 2 3 Input
D2 D3 1N4007 1N4007 C2 22F 400V D4 D5 1N4007 1N4007
R2 4.7k C3 22F 400V
R14 30 DS1 1N4007
R8 open
C5 470F 10V
L3 0 RL1 1M DL1 1N5233B RL5 30k 8765 U3 FSQ0270RNA
J1 FB 4 D6 R10 1N4007 2 5 U2 TL431A
R11 1.2k 1%
RL2 1M QL1 KSP2907A
J3 open
GND Drain VCC Drain FB Drain Vstr IPK
1234
ZR1 80
RL4 120k
C7 47F 25V
RL3 1k CL9 10F 50V
J2 0 4 ZD2 C8 open 47nF R13 open ZD1 1N4745
R12 open
RL7 40k
3
U1B QL2 KSP2222A FOD817A
FSQ0x70RNA Rev. 1.12
Figure 21. Demo Circuit
(c) 2006 Fairchild Semiconductor Corporation FSQ0170RNA, FSQ0270RNA, FSQ0370RNA Rev. 1.0.2 12
www.fairchildsemi.com
FSQ0170RNA, FSQ0270RNA, FSQ0370RNA -- Green Mode Fairchild Power Switch (FPSTM)
2. Transformer
1 2 6, 7 N EE2229 9, 10
Np/2
Np/2 3 Na 4 5
FSQ0x70RNA Rev. 1.00
5V
Figure 22. Transformer Schematic Diagram
3. Winding Specification Pin (S F)
Np/2 Na N5V Np/2 32 45 6, 7 9, 10 21 Insulation: Polyester Tape t = 0.025mm, 1 Layers 0.25 x 2 0.65 x 2 0.3 x 1 22 8 72 Solenoid winding Solenoid winding Solenoid winding Insulation: Polyester Tape t = 0.025mm, 2 Layers Insulation: Polyester Tape t = 0.025mm, 2 Layers Insulation: Polyester Tape t = 0.025mm, 2 Layers
Wire
0.3 x 1
Turns
72
Winding Method
Solenoid winding
4. Electrical Characteristics Pin
Inductance Leakage 1-3 1-3
Specification
1.20mH 5% < 30H Max
Remark
100kHz, 1V Short all other pins
5. Core & Bobbin
Core: EE2229 (Material: PL-7, Ae = 35.7 mm2) Bobbin: BE2229
(c) 2006 Fairchild Semiconductor Corporation FSQ0170RNA, FSQ0270RNA, FSQ0370RNA Rev. 1.0.2 13
www.fairchildsemi.com
FSQ0170RNA, FSQ0270RNA, FSQ0370RNA -- Green Mode Fairchild Power Switch (FPSTM)
6. Demo Circuit Part List Part Number
C6, C8 C1 C10 CS1 C2, C3 C4, C9 C5 C7 CL9 L1 L2 R6 J1, J2, J4, L3 R2 R3 R4 R5 R11 R9 R10 R14 RL3 RL1, RL2 RL4 RL5 RL7 RS1 ZR1 U1 U2 U3 QL1 QL2 D2, D3, D4, D5, D6, DS1 D1 ZD1 DL1 ZP1 ZDS1
Value
47nF 2.2nF (1KV) 1nF (200V) 1.5nF (50V) 22F (400V) 1000F (16V) 470F (10V) 47F (25V) 10F (50V) 330H 1H 2.4 (1W) 0 4.7k 560 100 1.25k 1.2k 10k 2 30 1k 1M 120k 30k 40k 9 80 FOD817A TL431 FSQ0270RNA 2N2907 2N2222 1N4007 SB540 1N4745 1N5233 82V (1W) P6KE180A
Quantity
2 1 1 1 2 2 1 1 1 1 1 1 4 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 6 1 1 1 1 1
Description (Manufacturer)
Ceramic Capacitor AC Ceramic Capacitor(X1 & Y1) Mylar Capacitor Ceramic Capacitor Low Impedance Electrolytic Capacitor KMX series Low ESR Electrolytic Capacitor NXC series Low ESR Electrolytic Capacitor NXC series General Electrolytic Capacitor General Electrolytic Capacitor Inductor Inductor Fusible Resistor Jumper Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor IC (Fairchild Semiconductor) IC (Fairchild Semiconductor) IC (Fairchild Semiconductor) IC (Fairchild Semiconductor) IC (Fairchild Semiconductor) Diode (Fairchild Semiconductor) Schottky Diode (Fairchild Semiconductor) Zener Diode (Fairchild Semiconductor) Zener Diode (Fairchild Semiconductor) Zener Diode (Fairchild Semiconductor) TVS (Fairchild Semiconductor)
(c) 2006 Fairchild Semiconductor Corporation FSQ0170RNA, FSQ0270RNA, FSQ0370RNA Rev. 1.0.2 14
www.fairchildsemi.com
FSQ0170RNA, FSQ0270RNA, FSQ0370RNA -- Green Mode Fairchild Power Switch (FPSTM)
7. Layout
Figure 23. Top Image of PCB
Figure 24. Bottom Image of PCB
(c) 2006 Fairchild Semiconductor Corporation FSQ0170RNA, FSQ0270RNA, FSQ0370RNA Rev. 1.0.2 15
www.fairchildsemi.com
FSQ0170RNA, FSQ0270RNA, FSQ0370RNA -- Green Mode Fairchild Power Switch (FPSTM)
Package Dimensions
8-DIP
Dimensions are in millimeters unless otherwise noted.
1.524 0.10
#1
#8
9.20 0.20 0.362 0.008 9.60 MAX 0.378
#4
#5
2.54 0.100
5.08 MAX 0.200 7.62 0.300 3.40 0.20 0.134 0.008
3.30 0.30 0.130 0.012 0.33 0.013 MIN
0.25 -0.05
0~15
+0.10
0.010 -0.002
September 1999, Rev B 8dip_dim.pdf
+0.004
Figure 25. 8-Lead Dual In-Line Package (DIP)
(c) 2006 Fairchild Semiconductor Corporation FSQ0170RNA, FSQ0270RNA, FSQ0370RNA Rev. 1.0.2 16
0.018 0.004
www.fairchildsemi.com
0.060 0.004
0.46 0.10
6.40 0.20 0.252 0.008
(
0.79 ) 0.031
FSQ0170RNA, FSQ0270RNA, FSQ0370RNA -- Green Mode Fairchild Power Switch (FPSTM)
(c) 2006 Fairchild Semiconductor Corporation FSQ0170RNA, FSQ0270RNA, FSQ0370RNA Rev. 1.0.2 17
www.fairchildsemi.com


▲Up To Search▲   

 
Price & Availability of FSQ0170RNA07

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X